For authors
Submission status

Archive (English)
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
VOLUME 107 | ISSUE 6 | PAGE 387
Parametric disordering-driven topological transitions in a liquid metacrystal
We show that an amplitude-modulated electromagnetic wave incident onto a liquid metacrystal (LMC) may cause parametric instability of meta-atoms' mechanical oscillations. It results in either phase-coherent motion of the meta-atoms (leading to time-dependent components of LMC dielectric tensor) or chaotic isotropization of the medium that can be treated in terms of effective temperature. Both scenarios enable switching of the sign of certain components of permittivity tensor that, in turn, modifies the topology of isofrequency surface. Thus, the topological transition in LMC is expected to have an oscillatory or quasi-thermal character depending on the parameters, but in any case the change of topology leads to dramatic changes of the medium properties, switching the LMC between the transparent and opaque states.