Home
For authors
Submission status

Archive
Archive (English)
Current
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 106 | ISSUE 1 | PAGE 51
Band gap tuning of Ge/SiC bilayers under an electric field: a density functional study
Abstract
The structure and electronic properties of Ge/SiC van der Waals (vdW) bilayer under the influence of an electric field have been investigated by the first-principles method. Without an electric field, the system shows a small band gap of 126 meV at the equilibrium state. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the negative E-field changes from 0.0 to -0.40 V/Å, the band gap first increases to a maximum of about 378 meV and then decreases to zero. A similar trend is exhibited for the positive E-field, ranging from 0.0 to +0.40 V/Å. The band gap reaches a maximum of about 315 meV at +0.10 V/Å. The significant variations of band gap are owing to different states of Ge, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the Ge/SiC vdW heterostructures is very promising for its potential use in nanodevices.