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The diffusion component of the current near a boundary gives rise to an additional
damping of low-frequency edge magnetoplasma oscillations in inhomogeneous 2D
electron systems (including superlattices). This damping increases with
decreasing value of the dissipative conductivity o, . The possibility of
experimentally observing the anomalous damping of edge magnetoplasma
oscillations in the case of an integer quantization of the Hall effect is discussed.

In the absence of an external magnetic field, plasmons in 2D electron systems' are
damped only in the collisionless limit w7> 1, where 7 is the momentum relaxation
time. In a strong magnetic field, such that the condition @, 731 holds (w, is the
cyclotron frequency), and Hall currents outweigh the dissipative currents, weakly
damped low-frequency magnetoplasma oscillations can exist in both the collisionless
limit and the local hydrodynamic limit wr < 1. Weakly damped magnetoplasma oscil-
lations with frequencies below @, and 1/7 have recently been observed experimentally
and are presently the subject of active research. These are edge magnetoplasma oscilla-
tions (EMOs) in bounded 2D electron systems under conditions corresponding to the
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quantum Hall effect (see, for example, Refs. 2-5 and the bibliographies there). The
EMO frequencies are inversely proportional to the magnetic field and to the transverse
dimension of the 2D system. It follows from recent experiments® that the damping of
low-frequency (w7<1) EMOs is not described at all by the existing theories. In the
present letter we show that if the ratio of the dissipative and Hall conductivities of
inhomogeneous 2D systems (including superlattices) is sufficiently small, o, /o,, €1,
the diffusion component of the electric field near a boundary leads to a damping of
EMOs which increases with decreasing value of the ratio o,, /0,,. Under conditions
corresponding to the quantum Hall effect in strong magnetic fields, this mechanism
may lead to an anomalous damping and to the disappearance of the EMOs. This
property of EMOs stems from the vanishing of the normal component of the current
at the boundary of the system; in the case of a vanishingly low dissipative conductivity,
while the Hall conductivity is nonzero, the result will be a pronounced increase in the
gradients of the nonequilibrium-carrier density near a boundary and an increase in the
dissipation. In an ideal Hall sample (o,, =0, o,, #0), the boundaries of the sample
are equipotentials, so edge magnetoplasma waves accompanied by oscillations of the
electron density and the boundary potential cannot propagate.

1. We consider a semi-infinite (y<0) conducting 3D medium in an external
magentic field Hy||Z. Effectively qualifying as a medium of this sort might be, for
example, a superlattice of 2D electron layers separated by thin insulating interlayers of
thickness d in the limit kd €1 (Refs. 7 and 8). This effect can be described correctly
only if the drift and diffusion components of the current are taken into account simul-
taneously in the magnetized conducting medium, so the system of equations for low-
frequency oscillations (w7<1) consists of the Poisson equation, the equations of elec-
trostatics, and the charge conservation law, along with the constitutive equations for
the electric displacement D = €E and the current density j = 6(E — fVp), where ¢, p,
and & are respectively the dielectric constant, volume charge density, and conductivity
tensor of the 3D medium, and B> 0 is the Einstein coefficient. At the y = 0 interface
between a conducting medium and an insulating external medium (with a dielectric
constant €,), boundary conditions are imposed: The electostatic potential ¢ and the
normal component of the electric displacement, D,, are continuous, and the normal
component of the current, j,, vanishes. For the frequency w(k) of a surface magneto-
plasmon which is propagating along this boundary, in the direction across the external
magnetic field (Refs. 9 and 10, for example), we find the dispersion relation

w €

(0., * ioxy Nekp, + €ok) = (eteolo,, kp + ikaxy), (1)

xx

where the parameter x, = [k* + (470, /€ — iw)/Bo,. 1"? is the reciprocal of the
depth (6) to which oscillations in the carrier density penetrate into the conducting
medium (1/8 = Re x,, ). In the case of a small but nonzero o, , corresponding to the
conditions o,, €0,,, k6 €0,,/0,,, in which case we have § = (20, /@)'’?, the spec-
trum o’ and the damping »” of a surface magnetoplasmon take the form

4no , an o?
w' = 2% W' = (o, + XX k§), (2)
€+eg €+ g ** Ty
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In other words, in the case (0,,/0,, )2 gkb<o,,/o,, the damping of a surface mag-
netoplasmon is determined completely by the diffusion processes near the boundary,
and it does indeed increase with decreasing value of the ratio o, /0,,, as ®”" « (0,,/
0, ) /2. In the case of vanishingly small values of o, (0, /0,, €k6<1), on the other
hand, the quality factor of surface magnetoplasma oscillations becomes less than uni-
ty, and these weakly damped surface magnetoplasmons cease to propagate.

The spectrum and damping of surface magnetoplasmons of the type in (2) in the
region of their weak absorption can be found not only from dispersion relation (1) but
also directly through the use of the surface-charge conservation law pg = — iw'pg
= —j, = — ikps0,,, Tps = ks (€ + &), the dissipation function ¢ (" = ¢/2%),

, ap ap
v o= {/dVoxx[lEx—ﬁ—a;P +|Ey—ﬁ—a;|’] (3)

and the electrostatic energy of the oscillations, &,

f;=de—e—(|E 12+ |E D+ [ dV ~F‘—"(|E12+|E|2) (4)
- 8 ¥ Y v ° gr x Y :

The vanishing of the total current inside the diffusion layer near the interface is taken
into account here: ikpgo,, — 0,,8p/6=0. In expressions (3) and (4), V and V,, are
the regions of the conducting and external media. The integral outside (inside) the
diffusion surface layer determines the first (second) term in expression (2) for the
damping of the surface magnetoplasmons.

2. A similar qualitative method can be used to find the spectrum and damping of
EMOs (in the region of their weak absorption), with allowance for the inhomogeneity
of the carriers near the boundary in a bounded 2D electron system (see also Ref. 4).
Working from the law of conservation of the edge charge Q, which sets up a potential
@ =20 In( l/kr)gxp( ikx — iwt) in vacuum (7 is the distance from the edge of the 2D
system, k is the wave number along it, and k»< 1), and the expressions for the dissipa-
tion function and the electrostatic energy, as in expressions (3) and (4), we find the
following logarithmic-accuracy estimate of the spectrum and damping of the EMOs in
the case k6<0,./0,,, k6<1:

o), = 20,k In(1/kd),
1

k o
" =20 + | XY |2 2 5
@p =20 | 8In(1/k8) maks) e, I“ k*8In(1/k8)] (5)

XX
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’

For the depth (8) of the localization of the nonequilibrium carriers near the edge of
the 2D system, the following expression holds in our diffusion approximation:

1 T iw T
— =I ..__2+ e v2 —_— . 6
5 m{[(ﬁ) 5xx'] B} (6)
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The first and second terms in (5) for w” of the EMOs are determined by the
dissipation outside layer &, while the third is determined by the dissipation in the layer
itself. At frequencies w € |0, |/B, we find from (5) and (6)

2 [ n ~ )
12/ (wo',,), w =~ 21r0xyk +20', Kk /In(1/k8). (7)

Expression (7) for @” of the EMOs differs from the corresponding expression which
has been derived by Volkov and Mikhailov* in that it contains a term proportional to
o' k. This term can contribute significantly to the damping of EMOs in magnetic
fields (or of the value of £, of the 2D electrons) which do not correspond to the
middle of the plateau of quantized values of o, in which case o, depends strongly
on the external parameters and increases significantly.® At frequencies > |0, |/B,
the depth & is equal to the diffusion length [8 = (280, /w)'*> 270, /w], and it
follows from (5) that undgr the condition o, /[0, In(1/k8)]<€ké<0,, /0,, the
damping of the EMOs is determined completely by the diffusion currents near the
boundary. It increases with decreasing value of the ratio o,./0,,, as ©" < (0,,/
o,,.)"? [if we ignore 07, (w) in the limit w7 < 1; cf. expression (2) for the damping of
surface magnetoplasmons]. In the case k6% 0., /0,,, in contrast, the EMOs become
strongly damped (with a quality factor less than unity). The transition from weak
damping to anomalous damping of EMOs thus occurs at @ ~o,, /5, §~p, i.e., under
the condition

o /axy L kBIn(1/kB), (8)

xx
where we have 0" /0’ ~0,,k8/0,, ~1/In(1/kB) <1.

Working from experimental data on the density of states near the Fermi level,
D(&y), for energies £, between Landau levels,'! we find the estimate
B=1/é#D(g;)~10"° cm. In strong magnetic fields H,~10T we thus have
S~B>r, ~vp/w,~107% cm and 8> <ay = (fic/eH,)'?~107° cm, justifying our
use of the local hydrodynamic approximation under these conditions (7, is the radius
of a cyclotron orbit, and @ is the magnetic length).'>!* For the values kX~ 10 cm !
in the experiments of Ref. 6, we find from (8) a lower limit on the values of the
dynamic dissipative conductivity o, (@,) of a sample at which there is an anomalous
damping of EMOs:

O/ 0y ~107% = 1074,

A dynamic conductivity of this magnitude could apparently be achieved in high-quali-
ty 2D conducting channels with a high carrier mobility in strong magnetic fields (for
small integer values of the filling factor, v = 1,2).
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